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1. Introduction

This talk introduces those open problems in homotopy theory in which set theory
and large cardinals play a role. The following diagrams should be kept in mind; we
will explain the meaning and relevance of these collections in the next sections.

{localizing subcategories} ⊇ {CBCs} ⊇ {HBCs}
{localizing subcategories} ⊇ {singly generated loc. subcats.} ⊇ {HBCs}

Question 1.1. The main questions regarding these collections and inclusions are
of four general types.

(1) Is it a set or a proper class?
(2) Is the inclusion an equality?
(3) For which categories is this true?
(4) Under what, if any, large-cardinal axioms is this true?

2. Categorical context

(Stable) homotopy theorists classically worked in the stable homotopy category
of (p-local) spectra S, but it is now common to generalize to other contexts, which
we will briefly mention.

A tensor-triangulated category [HPS97, A.2] is a triangulated category with a
closed symmetric monoidal product (the tensor product) that is compatible with
the triangulation. We denote the tensor product by ∧, the unit by S, and (graded)
morphism sets by [X,Y ]∗.

A monogenic stable homotopy category [HPS97] is a tensor-triangulated cate-
gory with arbitrary coproducts, such that the unit S is a small (see below), weak
generator (i.e. [S,X]∗ = 0 implies X = 0). Such categories always have arbitrary
products, and Brown representability holds (i.e. all cohomology theories are rep-
resented). Examples are the category of spectra, the derived category D(R) of a
commutative ring R, or the stable module category StMod(kG).

A Noetherian stable homotopy category is a monogenic stable homotopy category
in which the endomorphism ring [S, S]∗ is a Noetherian ring. (We also require a
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certain technical hypothesis; see [HPS97, Ch.6]). The primary example is D(R),
where R is a commutative Noetherian ring.

Throughout this talk, for simplicity we’ll work with the category of p-local spec-
tra S, unless mentioning otherwise. However, most statements can be applied
verbatim, or extended, to arbitrary (monogenic) stable homotopy categories, or
tensor-triangulated categories, without much extra effort.

There are many explicit constructions of the category S, and many equivalent
models for S, but for most of what we describe here, one need only use the above
properties. Note that in S we have representability theorems for both cohomology
and homology, so the objects of S are in bijection with cohomology theories, and
in bijection with homology theories.

We need the following definitions.

Definition 2.1. We say an object X is small (or finite, or compact) if
∐

[X,Yα] →
[X,

∐
Yα] is always an equivalence, when it exists. The full subcategory of finite

objects is essentially small, and is denoted F .

Definition 2.2. Let C be a triangulated category, and D be a full subcategory. We
say that D is thick if it is closed under suspension, the formation of triangles, and
summands (i.e. X

∐
Y in D implies X and Y in D). We say that D is localizing if

it is closed under suspension, triangles and arbitrary coproducts, and colocalizing
if it is closed under suspension, triangles and arbitrary products.

Let th(X) (resp. loc(X)) denote the smallest thick (resp. localizing) subcategory
containing X. Localizing subcategories of the form loc(X) are called singly generated
(or principal). In a monogenic stable homotopy category C, like S or D(R), we have
th(S) = F and loc(S) = C.

Question 2.3. Is there a set of localizing subcategories?

Classifying the localizing subcategories, and the thick subcategories of finite
objects, is one of the biggest goals in homotopy theory. In 1998, Hopkins and
Smith classified the thick subcategories of finite spectra - this remains one of the
most beautiful and useful results in stable homotopy theory. Since we don’t know
if there is a set of them, localizing subcategories are harder to get a handle on.
Bousfield classes offer one approach.

3. (Homological) Bousfield classes

Definition 3.1. Let E,F be objects in S. The (homological) Bousfield class of E is

〈E〉 = {W |W ∧ E = 0}.

If W ∧ E = 0, we say W is E-acyclic. We say E and F are Bousfield equivalent if
〈E〉 = 〈F 〉; this is an equivalence relation.

Question 3.2. Is there a set of homological Bousfield classes (HBCs)?

The answer is known to be yes, in most contexts. Okhawa [Ohk89] gave this re-
sult in spectra; Dwyer and Palmieri [DP01] for “Brown categories”; Hovey, Palmieri,
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and Strickland [HPS97, Ch.6] for Noetherian stable homotopy categories; and re-
cently Iyengar and Krause [IK11] showed this is true in D(R) for any commutative
ring R.

There is a partial ordering on HBCs, given by reverse inclusion. The coproduct
gives a join operation ∨α〈Xα〉 = 〈∨αXα〉; there is a maximum element 〈S〉 and
a minimum element 〈0〉. Because there is a set of Bousfield equivalence classes,
and a minimum, we can define a meet operation (as the join of the set of lower
bounds). This makes the collection of HBCs into a complete lattice, called the
Bousfield lattice.

The Bousfield lattice (BL) for spectra has been studied extensively [Bou79a,
Bou79b, HP99]. The BL of a Noetherian stable homotopy category was studied
in [HPS97]; the BL of the derived category D(Λ), where Λ is a particular non-
Noetherian ring, in [DP08]; and the BL of some general tensor-triangulated cate-
gories in [IK11].

It is not hard to see that every HBC is closed under triangles and coproducts,
hence is a localizing subcategory. Because so much is known about the Bousfield
lattice, one of the most important open problems is the following.

Question 3.3. Is every localizing subcategory an HBC?

In a Noetherian stable homotopy category, the answer is yes [HPS97]. In spectra
we have the following lemma, which is [HP99, Prop. 9.2].

Lemma 3.4. The following are equivalent.

(1) Every localizing subcategory is an HBC.
(2) Every singly generated localizing subcategory is an HBC.
(3) For every X, loc(X) = 〈aX〉.
(4) 〈X〉 ≤ 〈Y 〉 if and only if X ∈ loc(Y ).

The objects aX were defined by Bousfield [Bou79b, 1.13], in order to get a nice
complementation operation a(-) on HBCs, given by a〈X〉 := 〈aX〉. His construc-
tion also gives 〈X〉 = loc(aX), which shows that every HBC is a singly generated
localizing subcategory.

Bousfield’s work uses transfinite induction, and predates many relevant develop-
ments in the field. It seems plausible that, perhaps accepting some large-cardinal
axiom, it may be possible to make progress on item (3) above.

This lemma applies to spectra, but in fact would apply to any category with a set
of HBCs and a good a(−) construction. Constructing a(−) in D(R), for example,
via transfinite induction, should be within reach.

We will describe the dual picture, of cohomological Bousfield classes, below. But
first, we discuss the relevance of these concepts to localization. It is here that
large-cardinal axioms appear.

4. Localization

Definition 4.1. A full subcategory L of a category T is reflective if the inclusion
L ↪→ T has a left adjoint T → L. Then the composite L : T → T is called a
reflection or localization onto L.
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The objects X such that LX = 0 are called L-acyclic, and the objects in the
image L of L are called L-local. A morphism f : X → Y is called an L-equivalence
if Lf is an isomorphism.

A full subcategory C of T is coreflective if the inclusion C ↪→ T has a right
adjoint. The composite C : T → T is called a coreflection or colocalization onto C.

There is a bijection between localization and colocalization functors, so that a
subcategory is coreflective if and only if it is the collection of acyclics for some
localization functor [CGR11, HPS97].

As mentioned above, every object E in S determines a homology functor, E∗(X) =
[S,X∧E]∗, and every homology functor can be represented in this way by an object
in S. Because [S,X ∧ E]∗ = 0 if and only if X ∧ E = 0, we see that

〈E〉 = {W | E∗(W ) = 0}.

Historically, the following important result initiated the use of localization func-
tors in homotopy theory.

Theorem 4.2. (Bousfield 1979) Given a homology theory E∗ on S, there exists a
localization functor, LE , whose acyclics are precisely 〈E〉.

We paraphrase this by saying that “homological localizations exist.” This was
essentially a set theory issue. It was known that one could construct a large category
that inverted any set of morphisms [GZ67], however the resulting category would
not necessarily have morphism sets.

Note that a localization functor L is determined by its class of L-acyclics (or
by its class of L-locals, or by its L-equivalences), and so 〈E〉 = 〈F 〉 if and only if
localization LE is the same as localization LF . In this sense, the Bousfield lattice
is a description of all the different localizations that arise from homology functors.

Recently, much interesting work has been done in answering a more general
question.

Question 4.3. Given a localizing subcategory D, when is there a localization func-
tor whose acyclics are precisely D? In other words, are all localizing subcategories
coreflective?

Casacuberta, Gutiérrez, and Rosický have given an answer that depends on
Vopěnka’s principle, a large-cardinal axiom.

Theorem 4.4. [CGR11, Thm. 3.9] Let C be a stable combinatorial model category.
If Vopěnka’s principle holds, then every localizing subcategory in Ho(C) is singly
generated and coreflective.

This applies to the category of spectra (using simplicial sets as a model), and to
the derived category D(R) of a commutative ring R. There is also a slightly weaker
result, that does not require Vopěnka’s principle.

Theorem 4.5. [CGR11, Prop. 3.7] Let C be a stable combinatorial model category.
Then every singly generated localizing subcategory of C is coreflective.

(Both of these results actually apply more generally to semilocalizing subcat-
egories, in which we drop the requirement that the subcategory be closed under
fibres.)
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Question 4.6. To what extent can the large-cardinal assumption be weakened in
these results?

For example, we know that ZFC is sufficient when localizing at a homological
Bousfield class. As we’ll discuss below, recent work [BCMR11] has shown that one
can localize at a cohomological Bousfield class with assumptions that are weaker
than Vopěnka’s principle.

5. Cohomological Bousfield Classes

Recall that every object E determines a cohomology functor E∗(X) = [X,E]∗,
and every cohomology functor arises in this way.

Definition 5.1. The cohomological Bousfield class (CBC) of E is

〈E∗〉 = {X | [X,E]∗ = 0}.
We say that E and F are cohomologically Bousfield equivalent if 〈E∗〉 = 〈F ∗〉.

This gives an equivalence relation. There is a partial ordering on CBCs, again
given by reverse inclusion. There is a minimum 〈0∗〉, a maximum 〈(IS)∗〉 (where
I(−) is a Brown-Comenetz functor), and a join operation. Note that 〈E∗〉 is also
closed under triangles and coproducts, so every CBC is a localizing subcategory.

Question 5.2. Is there a set of cohomological Bousfield classes?

Unlike in the HBC case, as yet we have no answer to this question. So there is no
“cohomological Bousfield lattice.” Having a set of CBCs would also allow for several
well-behaved adjoint maps between the collection of HBCs and the collection of
CBCs, that would help us to understand the relationship between these collections.

Cohomological Bousfield classes are important because they are a generalization
of HBCs.

Lemma 5.3. [Hov95] Every HBC is a CBC.

In particular, 〈X〉 = 〈(IX)∗〉. Hovey gave this result for S, but it holds in any
category with a good Brown-Comenetz functor I(−), including Noetherian stable
homotopy categories and several examples of derived categories of non-Noetherian
rings.

In fact, Hovey conjectures the converse as well.

Question 5.4. Is every CBC an HBC?

There is some evidence for this in the category of spectra. For many important
spectra - K(n), E(n),KO,KT,Ell - we have 〈X∗〉 = 〈X〉. Hovey shows that for
all finite spectra F , 〈F ∗〉 is an HBC, and likewise for all spectra of finite type.

Recently, we’ve shown that 〈X∗〉 = 〈X〉 for all X in a Noetherian stable homo-
topy category, such as the derived category of a commutative Noetherian ring.

A positive answer to this question would also answer the previous question, and
would be evidence towards Question 3.3. A negative answer would give a negative
answer to Question 3.3, and promote the importance of CBCs in understanding
localizing subcategories. Along these lines, we have the next question.
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Question 5.5. Is every localizing subcategory a CBC?

Large-cardinal axioms may be relevant here, due to the following lemma.

Lemma 5.6. If all colocalizing subcategories are singly generated, then every local-
izing subcategory is a CBC.

Recall that, according to Theorem 4.3, Vopěnka’s principle implies that all lo-
calizing subcategories are singly generated in S.

We conclude with some comments about cohomological localization. Unlike in
the homological case (Theorem 4.1), it is unknown if cohomological localizations
exist in ZFC. Since all CBCs are localizing subcategories, Theorem 4.3 says that
cohomological localizations exist under the assumption of Vopěnka’s principle. By
looking at the complexity of the formulas used to define CBCs, [BCMR11] shows
that, in fact, cohomological localization in S follows from the existence of suffi-
ciently large supercompact cardinals - an assumption that is weaker than Vopěnka’s
principle. However, if the complexity of the CBC definition is shown to be strictly
greater than that of HBCs, this may imply that ZFC is insufficient for the existence
of cohomological localization.
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